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ABSTRACT 

Suppose that R is a prime ring with the center Z and the extended centroid C. 
An additive subgroup A of R is said to be invariant under special automorph- 
isms if ( I + t ) A ( I + t ) - ' C A  for all t ¢ R  such that t2=0.  Assume that R 
possesses nontrivial idempotents. We prove: (1) If ch R #  2 or if R C #  (2_, then 
any noncentral additive subgroup of R invariant under special automorphisms 
contains a noncentral Lie ideal. (2) If ch R = 2, RC = C,. and C / { 0 ,  1}, then the 
following two conditions are equivalent: (i) any noncentral additive subgroup 
invariant under special automorphisms contains a noncentral Lie ideal; (ii) there 
is a EZ\{O} such that a'~ZC_{~9"-: ~9 CZ} .  

The aim of this paper is to prove a conjecture raised in Herstein [4]. In [4], 

both the main theorem and the conjecture are stated under the assumption that 

R possesses a nontrivial idempotent.  But it seems more useful to formulate them 

under the weaker assumption that Q, the two sided Martindale quotient ring as 

defined on p. 156 of [5], possesses a nontrivial idempotent.  The main theorem of 

[4] and all its lemmas, together with their proofs, remain valid word for word 

under this context. So we will assume all lemmas of [4] in this strength. 

We recall some definitions and meanwhile fix our notation. In what follows, R 

will be a prime ring and Z its center. The left Martindale quotient ring of R is a 

ring S satisfying the following axioms (p. 156 [5] and also p. 20 [3]): 

(1) R C_ S. 
(2) For each a E S, there is a nonzero ideal I of R such that Ia C_ R. 

(3) If a E S and Ia = 0  for some nonzero ideal I of R, then a =0 .  

(4) Let I be a nonzero ideal of R. If &: RI---->RR is a left R-module  

homomorphism then there exists a E S such that icb = ia for all i E I. 

The two-sided Martindale quotient ring of R is the subring O of S consisting 
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of those elements a E S for which there exists a nonzero ideal I of R such that 

aI C R. The center of Q, denoted by C, is called the extended centroid of R. 

Note that the centers of O and S coincide. 

By a Lie ideal of R, we mean an additive subgroup U of R such that 

U ~ [ U, R ]. For convenience, we call a Lie ideal U proper if there is a nonzero 

ideal I of R such that U_~[ I ,R] .  A Lie ideal U is proper if and only if 

[ U, U] ~ 0. If R is not commutative, then for any proper Lie ideal U, /], the 

subring generated by U, always contains a nonzero ideal of R. Also, if aUb = 0, 

then a = 0 or b = 0 (see [2]). Since O will be assumed to possess a nontrivial 

idempotent throughout, R cannot be commutative and the above two properties 

will hold always. 

An additive subgroup A of R is said to be invariant under all special 

automorphisms in R if (1 + t)A (1 + t) -~ C A for all t E R such that t 2 = 0. Our 

main theorem is the following: 

THEOREM 1. Assume that Q possesses a nontrivial idempotent e = e2~ O, 1 

and that A is an additive subgroup of R invariant under all special automorphisms 

of R. Then either A C_ Z or A contains a proper Lie ideal of R, unless ch R = 2 

and dimcRC = 4. 

From now on, we assume that O possesses nontrivial idempotents. We begin 

our proof with a reformulation of lemma 6 [4]. 

LEMMA 1. Assume that A is an additive subgroup of R invariant under all 

special automorphisms of R. If there exist a nontrivial idempotent e and a nonzero 

ideal I of R such that [e, I] C A, then A contains a proper Lie ideal of R. 

PROOF. Let W = { r E R : [ r , I ] C A } . T h e n  W i s a s u b g r i n g o f R .  L e t J b e a  

nonzero ideal of R such that eJ C R, Je C R and eJe C R. Let t E e J(1 - e) C_ R. 

Then et = t and te = t 2= 0. Since [e, I] C A and A is invariant under special 

automorphisms of R, we have [ ( 1 - t ) e ( t + t ) , I ] C A .  Hence t = 

e t - t e - t e t E  W. So eJ(1-e)C_ W. Similarly (1 -e )Je  C W. Since W is a 

subring, ( 1 - e ) J e J ( 1 - e ) C  W. Set V=JeJ.  Then ( 1 - e ) V ( 1 - e ) C  W. Since 

VC_J, we also have e V ( 1 - e ) C e J ( 1 - e ) C _ W .  Hence V ( 1 - e ) _ C  

( 1 - e ) V ( 1 - e ) + e V ( 1 - e ) C _  W. Similarly, ( 1 - e ) V C  W. So W contains the 

nonzero ideal K = V(1 - e)V. Thus A ~ [K, I]. This implies immediately that A 

contains a proper  Lie ideal of R. 

Let  E be the additive subgroup generated by nontrivial idempotents of O, and 

T, the additive subgroup generated by those t E R such that t 2=0 .  The 

following lemma collects two well-known facts about E and T. 
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LEMMA 2. (1) E is a proper Lie ideal of  Q and T contains a proper Lie ideal of  

R. 

(2) For a E Q, if [ a , E ] = 0  or [ a , T ] = 0 ,  then a @ C. 

PROOF. (1) It is well-known that E is a Lie ideal of Q. Now we show that E is 

proper.  Suppose otherwise.  Then  [ E , E ] = 0 .  Let e = e 2 / 0 , 1 .  For  x E Q, 

e + e x ( 1 - e )  is also a nontrivial idempotent .  Hence  e + e x ( 1 - e ) =  

e(e  + ex(1 - e))  = (e + ex(1 - e))e = e. So ex(1 - e) = 0. Since Q is also prime,  

this implies e = 0 or 1 - e  --0.  This is absurd! 

Now we show that T contains a p roper  Lie ideal of R. Let  e be a nontrivial 

idempoten t  of Q. Pick a nonzero  ideal I of R such that eI  C_ R, Ie C_ R and 

eIeC_R.  Then for x E I ,  we have e x ( 1 - e ) ,  ( 1 - e ) x e ~ T .  Hence  [ e , x ] =  

e x ( 1 -  e ) - ( 1 -  e)xe  E T. That  is [e, I ]  C_ 7-. T is obviously invariant under  all 

special au tomorphisms  of R. So L e m m a  1 gives the desired result. 

(2) If [a, E ]  = 0, then [a , /~]  = 0. Since E contains a nonze ro  ideal of Q, 

a ~ C. Similarly for [a, T] = 0. 

We  assume from now on that c h R ~ 2  or d i m c R C > 4  and that A is a 

noncentral additive subgroup of R invariant under  all special au tomorphisms  of 

R. 

LEMMA 3. For x, y ~ Q, if x A y  = O, then x = 0 or y = O. 

PROOF. Without  loss of generality,  we may  assume that  x = y ~ R : For  given 

x, y E Q, we can find a nonzero  ideal I of R such that yIx C R. For  c ~ ylx, we 

have cAc  = 0. Suppose that we could show c = 0. Then  we have ylx  = 0 and this 

implies y = 0  or x = 0 .  

So now we assume that c E R is such that cAc  = 0. Let  .,~ be the subring 

genera ted  by A. We claim that  cfi, c = O. 

First assume that c 2 ~ 0. Let  b @ A and r E R. Set t = bcrc. Then  ct = 0 = t 2. 

For  a E A ,  at - ta + tat E A and hence 

0 = c(a t  - ta + tat)c = catc = cabcrc 2. 

Since c 2 / 0, we have cabc = 0. That  is cA2c = 0. Set B = A + A-'. Then  B is 

also an additive subgroup of R invariant under  special au tomorph isms  of R and 

also cBc = 0. Repea t ing  the above a rgument  for B in place of A, we have 

c ( B  + B2)c = 0. That  is c ( A  + A 2 + A 3 + A4)c - -  0. Cont inuing in this manner ,  

we have c,~c = 0. 

Now assume that c 2 = 0 .  Let a E A ,  r E R. Set t = crca. Then  t 2 = 0  and 

c t = O = t c .  Let  b @ A .  Then  m = t b - b t + t b t E A .  Note  that  c m = O  and 
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mc = tbc = crcabc. Hence  

crcabc = mc  = mc - cm  + cmc  E A .  

Set l = crcabc. Note  that lc = cl = 0 .  For  s ~ R such that s : = 0 ,  we have 

0 = c( ls  - sl + s ls)c  = cslsc = cscrcabcsc. 

So cabcsc = 0 always. That  is cabcTc  = 0. By L e m m a  9 (p. 120 [6]), this implies 

cabc = 0. That  is c A 2 c  = 0. Arguing  as in the previous case, we have cf~c = 0 

again. 

Now using the claim and applying lemma 5 [4] to fi~, we have c = 0 as desired. 

The following is crucial. 

LEMMA 4. Suppose  that  e G O  is a nontrivial  idempoten t  such that  

dimc (1 - e ) A C e  > 1. T h e n  there is a nonzero  ideal I o f  R such that  eI(1 - e)C_ A .  

PROOF. Let V be a nonzero  ideal of R such that e V C  R, Ve C R and 

eVe  C_ R. For s , t  E e V ( 1 -  e)  and a E A, we have 

and 

sa - as + sas E A ,  ta - at + tat @ A 

(s + t )a  - a ( s  + t) + (s + t ) a ( s  + t ) E  A .  

Subtracting the first two formulae f rom the last one,  we have sat + tas E A .  

Writing s = eu(1 - e)  and t = e v ( l  - e)  for u, v E V, we have 

eu(1 - e )aev(1  - e ) + ev(1 - e )aeu(1  - e ) E A .  

Let us define B = { x E R :  e x ( 1 - e ) ~ A } .  From the above,  we have u b v +  

vbu ~ B for any b ~ (1  - e ) A e  and for any u, v ~ V. 

Now by our  assumption that d i m c ( l - e ) A C e > l ,  we can choose 

b ,c  ~ ( 1 - e ) A e  such that b, c are C- independent .  We cla im that  there exist 

u , , v ~ , . . . ,  u., v, E V such that 

but 

uabv~ + . "  + u,,bv, = 0  

u~cv~ + . . .  + u , c v , #  O. 

Suppose otherwise.  Then  for any u~, v~ . . . . .  u,, v, E V, 

(*) u ~ b v ~ + . . . + u , b v , = O  implies u ~ c v , + . . . + u ,  c v , = O .  
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We define a m a p a :  VbV--> V c V  by 

a(ulbv~ + . . .  + u~bv,) = utcv~ +.  " + u, cv, 

for u~, v~ . . . . .  u,, v, E V. By (*), a is well-defined. It is obvious that a is a 

R-bi -homomorphism.  So a E C and ab =c .  This contradicts the C-  

independence of b, c. 

By the claim above, let us fix u~, v~ . . . . .  u~, v~ E V such that 

u ~ b v ~ + . . . + u ,  b v , = O  but u ~ c v ~ + . . . + u , c v , - - p ~ O .  

For x, y E R ,  

v~ybxu~ + . . .  + v, ybxu, = v~ybxu~ + . . .  + v, ybxu, + (xu~bv~y + . . .  + xu .bv , y )  

E B .  

(The equality above follows from the fact xu~bv~y + . . .  + x u ~ b v , y - - 0 . )  Set 

J = RbR.  The above says for r E J, 

v~ru~ + • • • + v, ru, E B. 

For x, y E V : J W  C_ R, we also have 

xu~cvty + • • • + xu,cv,  y + v~ycxu~ + • • • + v, ycxu,  E B. 

Since ycx ~ J, vt ycxu~ + • • • + v,ycxu,  ~ B by the paragraph above. We have 

xu tcv ty  + .  • • + xu ,cv ,y  = xpy E B. 

Thus (V~JV2)p(V2JV~-)C_ B and hence e I ( 1 -  e)C_ A where I is the nonzero 

ideal (V2JVZ)p(V2JV2). 

LEMMA 5. Let e be a nontrivial idempotent of  Q. I f  dime (1 - e ) A C e  --- 1, then 

Q satisfies a G.P.I .  and hence has a m i n i m u m  idempotent. 

PROOF. By Lemma 3, we can pick a E A such that ea(1 - e) ~ 0. Let 

b(u, v )  = (1  - e )uea(1 - e )ve + (1 - e )vea(1 - e )ue. 

Choose a nonzero ideal V of R such that e V  C_ R, Ve C R and eVe C R. For 

u ,v  ~ V, by the argument in Lemma  4, b ( u , v ) E A  and hence b ( u , v )  = 

( 1  - e)b(u,  v)e  E (1 - e)Ae .  Since dimc (1 - e ) A C e  = 1, 

b(u,, v3xb(u._, v_.) = b(u~, w_)xb(u, v,) 

holds for u~, v~, uz, v2, x E V. This is a nontrivial G.P.I.  for V. So V satisfies a 

G.P.I.  and hence so does O. By [7], O has a minimum idempotent .  
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LEMMA 6. If e is a minimum idempotentofQ, then dimceA(1 - e ) >  1 except 
when RC = C2. 

PROOF. Set M = eQ and D = eQe. Q, via right multiplication, can be 

regarded as a dense subring of Hom(oM, oM). Choose a basis {vl, v2 . . . .  } for M 

such that v~e = vl but v2e = v3e . . . . .  0. Pick a C A  such that e a ( 1 - e ) ~ O  
and let u =v~ea(1-e) .  Observe that u ~ 0 ,  for otherwise we would have 

ea(1 - e) = 0 by the faithfulness of such representation. Let b ~ Q be such that 

ub = 0 .  Then v~ea(1-e)b = 0  for all i. Hence ea(1-e )b  = 0 .  Assume that 

dimceAC(1 - e) = 1. Then we have eA(1 - e)b = 0. By Lemma  3, (1 - e)b = O. 
T h u s  122b = vzeb = 0, t~3b = t~3eb = 0 ,  . . . .  Since this holds for any b ~ Q such 

that ub = 0, Jacobson's  density theorem says that v2, v3,. . ,  are all D-dependen t  

on u. Hence  dimo M = 2 and O = D2. We must show D = C. 

Write 

Fix a nonzero element a = (o ~) of ( 1 -  e)Ae. Let 

o/ 0) 
be two elements of eQ(1-  e )n  R. We compute 

sat+tas = ( ~  uxv+vxu)  0 E e A ( 1 - e ) .  

Hence the set 

{uxv+vxu:  (~ 0 ) '  (~ O) ~ e O ( 1 - e ) N  R} 

is one dimensional over C. By Lemma  5, Q satisfies a nontrivial G.P.I.  By the 

main result of Martindale [7], D is finite dimensional over  C. Since Q = D2, R is 

a P.I. ring and hence Q = RC is simply the localization of R at its center Z. 

Given u, v E D, we can find a,/3 E Z \ {0} such that 

(~ 7 ) a n d  (~ fl0 v) 

are elements of eQ(1 - e) D R. Hence the set S = {uxv + vxu : u, v ~ D} is also 

of dimension 1 over  C. 

- ~x -~ Then uxv + vxu u. So D is one dimensional over  C If ch R ~ 2, let v - - . = 

and D = C. So we assume ch R = 2. For u E D, note that [u, x] = uxl + lxu E S. 
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If x ~ C ,  choose u ~ D  such that 0 ~ [ u , x ] .  Then [ux, x]=~[u ,x]  for some 

A ~ C. But this implies x = A E C, absurd! So x E C. Replacing v by x-iv in 

uxv + vxu, we obtain that {uv + vu: u, v E D} is one dimensional over C. 

Suppose that [u, v] ~ 0. Then [u, vu] = ~t[u, v] for some )t E C. But this implies 

u = A E C, a contradiction again. So D is commutative and hence D = C. 

LEMMA 7. If R C ~  C2, then A contains a proper Lie ideal. 

PROOF. By Lemma 1, it suffices to show that there exist a nontrivial 

idempotent e and a nonzero ideal I of R such that [e, I] C_ A. 

Suppose that Q has a minimum idempotent e. Since we assume that R C ~  C2, 
by Lemma 6, both e A C ( 1 - e )  and ( 1 - e ) A C e  have C-dimension > 1. By 

Lemma 4, there exists a nonzero ideal I of R such that eI(1-e)C_ A and 

(1 - e)Ie C_ A. Hence [e, I] = eI(1 - e ) -  (1 - e)Ie C_ A. 

Now suppose that Q has no minimum idempotents. By Lemma 5, 

dimc(1 - e)ACe > 1 for any nontrivial idempotent e. Arguing as in the previous 

paragraph, we have [e, I] C A for some nonzero ideal I of R. 

PROOF OF THEOREM 1. Now we are left with the case R C =  C~. By the 

assumption, ch R ~ 2. As remarked in [4], the argument below, essentially the 

one given by Amitsur [1], actually gives a proof of Theorem I when ch R ~ 2. 

Suppose ch R ~ 2 .  Let a @ A and t E T. Then 

( 1 -  t)a(1 + t ) - ( 1  + t ) a ( 1 -  t ) = 2 ( a t -  ta) =2[a ,  t i e  A. 

So we have [2T, A]  C A. By Lemma 2, T contains a proper Lie ideal of R and 

hence so does 2T. By theorem 13 (p. 123, [6]), A also contains a proper Lie ideal 

of R. This completes the proof of Theorem I. 

Surprisingly, unlike the main theorem in [4], Theorem 1 is actually false in 

general when ch R = 2, RC = C~_ and C ~  {0, 1}. Instead of constructing a single 

counterexample, we would like to give a thorough analysis of this case. 

Throughout  the rest of the paper, we assume that ch R = 2, RC = (?2 and 

C ~  {0,1}. Define Z " = { a 2 :  a E Z } ,  where Z is the center of R as before. 

Following (p. 271 [9]), Z is said to be a fractionary ideal of Z ° if and only if there 

is 0 fi a E Z" such that aZ C_ Z °. Our next objective is to prove 

THEOREM 2. Suppose that RC = C2, ch R = 2 and C~  {0, 1}. Then the follow- 

ing two conditions are equivalent: 
(1) Every noncentral additive subgroup of R invariant under all special 

automorphisms contains a proper Lie ideal of R. 

(2) Z is a fractionary ideal of Z °. 
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PROOF OF (1) ~ (2). Le t  aq (i, j = 1,2) be the matr ix  units of (72 such that  
k eqek~ = 8je~, and e .  +822 = 1. Since R C  is s imply the localization of R at its 

center  Z, there  is 13 @ Z such that  /3eq E R for all 1 =< i, j N 2. Suppose  that  

(Otl '  0/12 / r = = oe~jeq @ R, where  a ,  ~ C. 
\0/21 0/22/ ", 

Then  0/~, = c¢~,1 = e~re,~ + e2ye, e. H e n c e  

/32a,j = (/3e,)r(/3e,,) + (flee,)r(/3eje) ~ R N C = Z. 

Let  Z~ be the addit ive subgroup  of C genera ted  by those aq (i. j = 1.2) such 

that  Z~.j=, a,e,  E R. T h e n / 3 2 Z ,  C_ Z. Define  Z ° = {0/2: 0 / ~  Z,}. Z~ is an addit ive 

subgroup  of C. For  a E Z~, /3~ 2 = (/3:a)e E Z o. Hence  134Z~C Z". 

Let  A consist of those e lements  

a=(0/" 0 / 1 2 ~ R  
\CIL21 ~]~22] 

such that  al ,  = 0/22 and a,2, a2~ @ Z~. A is obviously an addit ive subgroup  of R. 

Since/3 E Z C_ Z,  and/32e,e E R,/3Zel2 ~ A. So A is noncentral .  We  show that  A 

is invariant  under  all special au tomorph i sms  of R. Let  

t = ( r , ,  r,2) E R 
\ T21 T22 

be such that  t ~ = 0. Then  tr( t)  = ~',~ + r_,e = 0 and det ( t )  = r,,r,_,_ + r,er:, = 0. Let  

a = ( 0 / "  0/,2) E A.  
\OL21 0/22 

Then  0/,, = %2 and 0/,2, a2, @ Z~. We compu te  (1 + t ) a ( l  + t) = a + [ a, t ] + tat  as 

follows: Using the fact that  a~, = 0/21 and r~ = tee, 

,a,,,__[(0 V)(0 0 
Od2l ~ T21 0 0~12T21 + OL21TI2 

Using the fact that  a~, = 0/2a and t 2 = 0 ,  

\T21 T22/ \OL21 ~ \T21 

TI2 

T22) 

{(0/,2~2, + o,2,~,2)~,, ,,,..G + ,,elG '] 
= \ a,:r], + 0/2,rz,, (0/,2r2, + ae,rte)r, ,I  E A.  

So (1 + t )A(1  + t)C_ A as desired.  
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By our assumption, A contains a proper Lie ideal, say [/, R], where I is a 

nonzero ideal of R. Since [L R]C = [IC, RC] = [RC, RC], [L R] contains an 

element 

su .that  0 

For ~ E Z ,  ~u~[~I, RIC[I, RIC_A. So ~,~Z~. Hence /34(~y)E/34Z~C_Z°. 
4 0 0 - -  Z 0 Set a =/34y. Then a @/3 Z~ C Z and o~Z C as desired. 

We need some lemmas before proceeding to prove that (2) ~ (1) 

LEMMA 8. Suppose that U is a noneentral C-subspace of C2 invariant under 
all special automorphisms of C2. Then U D_ [ Cz, C2]. 

PROOF. This is contained in theorem 1.15 ([2]). 

Although in the statement of the theorem, the invariance under all inner 
automorphisms is assumed, only the invariance under all special automorphisms 

of R is actually used in its proof. 

LEMMA 9. Suppose that U is an additive subgroup of R such that C U D  
[C2, C~]. Then Z U  contains a proper Lie ideal of R. 

PROOF. Since CU _D [C:, C_,] and since 1, e,2, e2, ~ [(72, C2], there is a E Z 
such that a, ae,2, ae2~ E ZU. Suppose that 

2 

r= E y,e, ~ [ R , R ] .  
i . / - i  

Then %, = y22. Write r = y~,l + "y~2e12 + y21e2~. Choose/3 G Z such that/3e~ i E R 
for 1 =< i, ] _-< 2. As in the proof of (1) ~ (2), /32y.,/32y~2 '/32y2, E Z. So 

a/3"-r = (/32y.)(a 1) + (/32y,,)(ae~2) + (/32 y20(ae2~) E Z ( Z U )  C_ ZU. 

Hence Z U  contains the proper Lie ideal a/32[R, R]. 

As before, we assume that A is a noncentral additive subgroup invariant 

under all special automorphisms of R. 

LEMMA 10. CA is a noncentral C-subspace of C2 invariant under all special 
automorphisrns of C2. 

PROOF. Let a E A and t ~ C2 be such that t 2 = 0. It suffices to show that 

(1 + t)a(1 + t) E AC. Obviously, there exists a E Z\{0,  1} such that at E R. 
Then 

(1 + at)a(1 + a t ) -  a = a[a, t]+ a2tat E A. 
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Since a2t = a ( a t ) E  R, we also have 

(1 + a2t)a(1 + a 2 t ) -  a = a2[a, t ]+  a4tat ~ A .  

Using the fact that a ~ 0 ,  1, we can solve [a, t], tat E CA. 

Combining Lemmas 8, 9, 10, we have the following 

LEMMA 11. Z A  contains a proper Lie ideal of R. 

For f f E Z ,  we define A ( ~ ) = { a @ A :  ~ a E A } .  

LEMMA 12. Assume that Z is a fractionary ideal of Z °. If  A (~) ~- Z for some 

E Z\{0,  1}, then A contains a proper Lie ideal of R. 

PROOF. Let a ~ A (~') and t E T. Then 

~(at + ta + tat) = (1 + t)(ffa)(1 + t) - ~'a ~ A. 

Also, 

~(at + ta)+ ~2tat = (1 + ~'t)a (1 + ~'t)-  a E A. 

Subtracting the second from the first, (ffz+ ~)tat E A. Let B be the additive 

subgroup generated by (if2 + ~)tat, where a @ A (~) and t E T. B is obviously 

invariant under all special automorphisms of R. We show that B is noncentral. 

Suppose otherwise. Then for t ~ T, a ~ A (~'), tat E Z (q T = {0}. Let e be a 

nontrivial idempotent of RC. Pick a nonzero ideal I of R such that el, Ie, eIe C 

R. For x ~ l, we have ex(1 - e)aex(1 - e) = 0. Hence (1 - e)ae = 0. (See lemma 

2 [8], for example.) Similarly, we also have e a ( 1 - e ) = O .  So [ a , e ] = 0 .  By 

Lemma 2, a @ Z. So A (~)C Z. This is absurd. 

For 6 E Z, 62(,~: + ~)tat = (~2 + ~)(6t)a(6t)  C B. So Z ° B  C B. Since Z is 

assumed to be a fractionary ideal of Z °, there exists 0 P a C Z" such that 

a Z  C Z °. Consider aB. Since B is noncentral and invariant under all special 

automorphisms of R, so is aB. By Lemma 11, Z ( a B )  contains a proper Lie ideal 

of R. Observe that 

Z ( a B )  = (aZ)B C_ Z"B C_ B. 

Hence B contains a proper Lie ideal of R and so does A as desired. 

Now we are ready to give 

PROOF Or (2) ~ (1). Suppose that Z is a fractionary ideal of Z °. Assume on 

the contrary that A does not contain proper  Lie ideals. We want to show A C_ Z. 

Since C~{0,1},  Z~{0,1} .  Pick ~ E Z \ { 0 , 1 } .  Then ~'2~{0,1}. By Lemma 12, 
a (~2) c_ Z. 
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Let 

e=(10 00). 

Choose a nonzero ideal I of R such that e I ( 1 - e ) C R ,  ( 1 - e ) I e C R ,  
~eI(1 - e )C  R and ~'(1 - e)Ie C R. Suppose that 

t = ( ~  0 ~) and s=(Oy ~) 

are nonzero elements of eI(1 - e) and (1 - e)Ie respectively. By our choice o f / ,  

s, t, ~s, fit are all in R. 

Let 

o=( ;  w 

be an arbitrary element of A. We compute 

bt = at + ta + tat = ( ~  z [3(x + w) +[32z) 
[3z ~ A, 

b2= ~(at + ta)+ ~Ztat = (~oZ ~ ( x  + w)+ @ A. 

We claim that if tr(a) = x + w = 0 then a is central. Suppose that x + w = O. By 

the formula above, 

/3z ] ' ~'/3z ] " 

Set c~ = b~s + sb~ + sb,s and c2 = b2s + sb2 + sbzs. Another direct computation 

gives 

( ,/t32z 0 ) 
Cl = \y2/32 z y/32z and c2 = ff2c~. 

Since bl, b2, c, and c2 are all in A, we have ClEA(~2)C_Z. Hence z =0 .  

Interchanging s and t and using a similar argument, we can show that y = 0. So 

o=(o x 0) 
is central. 

For an arbitrary element 
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a--(: w') 
of A, by the formula above, bl = at + ta + tat and b2 = ~(at + ta)+ ~2tat both 

have trace zero. Applying the claim above, we have 

[3(x + w)+ t32z =0, 

~t3(x + w)+ ~'-t3"-z =0. 

Solving these two equations, we have x + w = 0 and z = 0. Interchanging s and 

t, we have also y =0 .  So 

a (0 o) 
is central. This completes the proof of Theorem 2. 

Observe that if Z is a fractionary ideal of Z °, then C, the quotient field of Z, 

must be a perfect field. Hence if C is an imperfect field of characteristic 2, then 

for any order R of C2, there is a noncentral invariant additive subgroup which 

does not contain any proper Lie ideals. On the other hand, suppose that C is a 

finite field, which must be perfect. Then the only order of G is C2 itself. Hence 

Theorem 1 holds if C is finite and C ¢  {0, 1}. 

To conclude this paper, we remark that one can replace proper Lie ideals by 

noncentral Lie ideals in both Theorem 1 and Theorem 2 without affecting their 

validity and strength. On the one hand, proper Lie ideals are obviosly noncen- 

tral. On the other hand, it is proved in theorem 13 [6] that any noncentral Lie 

ideal of R is proper  unless ch R = 2 and d i m c R C  _-< 4. Since it is assumed that 

ch R / 2  or d i m c R C > 4  in Theorem 1, proper Lie ideals and noncentral Lie 

ideals are really the same there. For Theorem 2, suppose that A contains a 

noncentral Lie ideal U, which might be improper. Let V be the additive 

subgroup generated by [U, R] and all (1 + t)[U, RI(1 + t) -~ for t ~ R such that 

t 2 = 0. Obviously, A _D V and V D ZV. If V is central, then [ U, R ] C_ Z and this 

implies immediately U C_ Z, a contradiction. Since V is invariant under special 

automorphisms of R, by Lemma 11, Z V  contains a proper Lie ideal and so does 

A. 
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